Introduction to BLDC Motor Control
Using Freescale MCU

Tom Wang
Segment Biz. Dev. Manager
Avnet Electronics Marketing Asia
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
Structure of a single-phase 2 pole-pair BLDC motor

- Based on attraction and repulsion of magnetic poles.
- Rotating magnetic field of stator rotates rotor
- Rotation of magnetic field must be in phase with rotation of rotor.
- Rotation of magnetic field is achieved by changing direction of current through the stator coil.
- Speed Control achieved by controlling the average current flowing into stator coil.
- Hall Sensor used to detect rotor position.
Operation of a single-phase 1 pole-pair BLDC motor
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
Motor Mechanical Model

Mechanical model:

Mechanical Drive Torque generated T is expressed as follows:

$$T = K_T \cdot i \cdot \sin(N \cdot \theta + C) = J \cdot d\omega/dt + L \cdot \omega + T_{ext}$$

where:

- K_T = torque constant
- i = current through coil
- N = Number of pole pairs
- θ = phase angle of rotor
- C = phase offset due to motor phases
- J = moment of inertia of rotor
- ω = angular speed of rotor = $d\theta/dt$
- L = constant associated with speed-related losses (damping, eddy current, friction)
- T_{ext} = other external mechanical load
Motor Electrical Model

Electrical model:
\[V_s = L_m \frac{di}{dt} + i.R_m + K_T.\omega \]

where:
- \(V_s \) = supply voltage
- \(L_m \) = motor coil inductance
- \(R_m \) = motor coil resistance
- \(\omega \) = rotor speed
- \(K_T.\omega \) = back-emf induced voltage
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
MC9S08SH4 Task and Resource Scheduling

- Input PWM
- Current sense
- Hall input

Flowchart:
- Duty cycle measurement
- Input speed setpoint measurement
- Motor Speed Control
- ADC
- Overcurrent detection
- LockedRotor detection
- Comparator
- Motor Speed Measurement
- Commutation detection
- Timer
- TPM
- Motor Drive Output
- Tach Output
Agenda

- Introduction to Brushless DC Motors
- Motor Electrical and Mechanical Model
- Motor Speed Control Hardware Design
- Motor Speed Control Software Tasks
- Motor Speed Control Challenges
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
H-Bridge (Driving Sequence)

Power supply

Motor

Hall sensor (digitized)

1 Electrical Cycle

Phase

(A) (B)

Hall sensor (digitized)

H1

H2

L1

L2

Commutation

(A) (B)
H-Bridge (Efficient Driving Sequence)

1 Electrical Cycle

Phase
Hall sensor (digitized)

H1
H2
L1
L2

(A)
(B)

Commutation
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
Reduce in-rush current

- In-rush current due to change in fan speed setpoint can cause sudden current surge
- External power supplies may trip due to current surge

Solutions:
- Setpoint – current RPM differential limit
- Setpoint ramping
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
Over-current limit

رصد: مطلوب للهواءات ذات التدفق العالي للحد من آثار الضرر على الأدوات الإلكترونية

رصد: الإرتفاع في التدفق الناتج عن القيود المادية على الحركة الأسطوانية

رصد: يمكن تنفيذه باستخدام مقاومة قياس التدفق المكونة وموصل التخمين السريع – متاح في MC9S08SH4
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
Speed Control Accuracy

- PID speed control steady state error
- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy
Speed Control Accuracy

- PID speed control steady state error
- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy
PI Closed-Loop Speed Control Model

\[G(s) = K_p + \frac{K_i}{s} \]

Motor driving System \(H(s) \)

Input speed \(e \)

Output speed

PI Motor Speed Control
PI Closed-Loop Speed Control

- Velocity form of PI, also called “incremental” or “differential” PI is used to control motor speed.
- Derived by differentiation of the standard form.

- The velocity form of PI:
 \[G'(s) = K_p \cdot s + K_i \]
PI Closed-Loop Speed Control Model (Velocity form)

\[G'(s) = K_p s + K_i \]

Motor driving System \(H(s) \)

Input speed + \[e \] \(G'(s) \) = \(K_p s + K_i \) \(u \) \(1/s \) \(c \) \(H(s) \) Output speed

PI Motor Speed Control (Velocity form)
PI Speed Control Steady State Error

Steady state error occurs when non-zero e results in zero u output.

Caused by implementation of PI Control loop in integer arithmetic:

$Ki \times e < 1 = 0$

$\Rightarrow e < \frac{1}{Ki}$

Maximum steady state error = $\frac{1}{Ki}$
Speed Control Accuracy

- PID speed control steady state error
- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy
Output speed measurement accuracy

- Output speed measurement accuracy depends on MCU clock accuracy
- Crystal can be used to provide accurate clock – but this is expensive solution
- MC9S08SH4 can run on internal oscillator.
 - Factory-trimmed with typical accuracy of 1% over voltage and temperature range
Speed Control Accuracy

- PID speed control steady state error
- Output speed measurement accuracy
- Input PWM duty cycle measurement accuracy
Measuring Input PWM duty cycle

“Standard” Method of measuring PWM duty cycle

Step 1: Low pass filter to convert PWM to analog voltage where analog voltage level is proportional to the PWM duty cycle

Step 2: MCU measures analog voltage level using internal ADC

Step 3: MCU derives duty cycle by dividing measured ADC value by maximum ADC value.
Measuring Input PWM duty cycle

Problems with ADC method:

- Accuracy is affected by ground noise when motor is running – especially bad for high-current motor
- Low pass filter circuit subject to component value variation (e.g. 1% resistors) and temperature variations.
- ADC performance limitations (output resistance limits of low pass filter circuit, non-linearity errors, zero-scale errors, full-scale errors, quantization errors)

Conclusion:

- It is odd to measure a digital signal by conversion to analog signal to derive its digital value!
Measuring Input PWM duty cycle

Random Sampling Method of measuring PWM duty cycle

Step 1: Level translation circuit to convert PWM signal voltage level to MCU logic voltage level

Step 2: MCU samples PWM signal at its GPIO pin at random intervals to derive PWM duty cycle

Duty cycle = (Total number of ‘1’ samples) ÷ (Total number of samples)
Measuring Input PWM duty cycle

Mathematics behind random sampling:

- One reading of GPIO will yield either logic ‘1’ or ‘0’
- Therefore, one sample of PWM signal is a Bernoulli trial; where the probability of reading logic ‘1’ is:

\[P(\text{reading a logic ‘1’}) = \text{duty cycle of PWM signal} \]

- For multiple independent samples, this becomes a binomial distribution
Measuring Input PWM duty cycle

According to Binomial Distribution:

- The proportion of samples with logic ‘1’ = \(np/n = p \)
- The standard deviation is \((p(1-p)/n)^{\frac{1}{2}} \)
Measuring Input PWM duty cycle

When \(n \) is large, Central Limit Theorem states that the binomial distribution can be approximated by a Normal distribution.

Based on approximation to Normal distribution, the relationship between actual mean (\(p \)), observed mean (\(X \)), standard deviation (\(\sigma \)) and \(Z \), the standard normal distributed variable is:

\[
p = X \pm Z \sigma \approx X \pm Z \sqrt{(X(1-X)/n)}
\]

Hence, the probability that \(p \) is outside of above range is defined by the \(Z \), the standard normal distributed variable:

\[
1 - P((X - Z \sigma) < p < (X + Z \sigma)) = 1 - P(-Z < z < Z)
\]
Error contributions between Input PWM and Output Speed (RPM):

- Input PWM duty cycle measurement error
- Output speed measurement error
 - E.g. MCU datasheet indicates MCU clock error less than 1% - this will result in up to 1% error in output speed measurement error
- PID Control Loop steady state error
 - E.g. if the Integral Gain is 0.0722, the maximum steady state error is \(\frac{1}{0.0722} = 13 \) (rounded down)
Speed Control Accuracy - Conclusion

Therefore, to achieve a certain output RPM error limit:

- Duty cycle measurement error + Output speed measurement error + PID steady state error \leq Output RPM error limit
- Duty cycle measurement error \leq Output RPM error limit - Output speed measurement error - PID steady state error
Speed Control Accuracy - Conclusion

We can put all these into a spreadsheet:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Values</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to obtain single duty-cycle measurement (s)</td>
<td>0.5</td>
<td>Implementation specific - dependent on MCU</td>
</tr>
<tr>
<td>Minimum operating speed (RPM)</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Maximum operating (RPM)</td>
<td>4000</td>
<td>These parameters determine the fan operating curve (RPM vs. duty cycle)</td>
</tr>
<tr>
<td>Minimum duty cycle (%)</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Maximum duty cycle (%)</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>PID Loop maximum steady state error (RPM)</td>
<td>17</td>
<td>This error is the reciprocal of the PID Integral Gain</td>
</tr>
<tr>
<td>Maximum MCU clock error (%)</td>
<td>1.00%</td>
<td>Obtained from MCU datasheet.</td>
</tr>
<tr>
<td>Maximum allowed RPM error (RPM)</td>
<td>50%</td>
<td>Specified by user/customer</td>
</tr>
<tr>
<td>Duty cycle (%)</td>
<td>50%</td>
<td>Operating Duty Cycle. Worst case error occurs at 50% duty cycle</td>
</tr>
<tr>
<td>Max Error @ specified duty cycle (%)</td>
<td>1.8000%</td>
<td>This must be less than "Maximum allowed duty cycle error (%)"; otherwise, background color will change to red</td>
</tr>
<tr>
<td>Number of random samples required to perform one duty cycle measurement</td>
<td>50000</td>
<td></td>
</tr>
</tbody>
</table>

| Computed Parameters | | |
|---------------------|------------------|
| Fan operating curve slope [A] | 3100 | Desired operating RPM = A*p + B |
| Fan operating curve offset [B] | 900 | |
| Maximum allowed error due to duty cycle error @ specified Duty Cycle (RPM) | 58.5 | |
| Maximum allowed duty cycle error (%) | 1.89% | |
| Standard normal variable limit | 8.049844719 | This limit determines the confidence interval that the actual duty cycle lies within the specified limits of the observed duty cycle. |
| Probability of one duty cycle measurement exceeding Max Error [Pe] | 8.8817842E-16 | "Failure" is the case when measured duty cycle deviates from actual duty cycle by more than Max Error |
| MTBF (hours) | 1.5637499E+11 | |
Motor Speed Control Challenges

- Phase commutation efficiency
- Reduce in-rush current
- Over-current limit
- Speed Control Accuracy
- Tuning motor speed curve
Tuning Motor Speed Curve

- Must tune quickly to meet customer changing requirements
- Complex motor speed curve requirements
- Avnet’s solution: Configuration by Excel spreadsheet!
 - Easy to use
 - Generates firmware automatically
Tuning Motor Speed Curve

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data revision</td>
<td>0000</td>
<td>User should change this for each new set of parameters they use</td>
</tr>
<tr>
<td>Proportional gain</td>
<td>5000</td>
<td>Proportional gain of PI control. The actual value is a fraction of 2(^{16})</td>
</tr>
<tr>
<td>Integral gain</td>
<td>2500</td>
<td>Integral gain of PI control. The actual value is a fraction of 2(^{16})</td>
</tr>
<tr>
<td>Minimum input duty cycle (%)</td>
<td>95.00%</td>
<td>Minimum input duty cycle at which motor can start running</td>
</tr>
<tr>
<td>Maximum input duty cycle (%)</td>
<td>95.00%</td>
<td>Maximum input duty cycle at which motor runs as maximum speed</td>
</tr>
<tr>
<td>Minimum tach speed (RPM)</td>
<td>1400</td>
<td>Minimum speed at which motor should run</td>
</tr>
<tr>
<td>Maximum tach speed (RPM)</td>
<td>4600</td>
<td>Maximum speed at which motor should run</td>
</tr>
<tr>
<td>Lower hysteresis minimum input duty cycle (%)</td>
<td>11.00%</td>
<td>Lower hysteresis minimum limit at which motor will stop running</td>
</tr>
<tr>
<td>Upper hysteresis minimum input duty cycle (%)</td>
<td>15.00%</td>
<td>Upper hysteresis minimum limit at which motor will stop running</td>
</tr>
<tr>
<td>Lower hysteresis Full Speed input duty cycle (%)</td>
<td>97.00%</td>
<td>Lower hysteresis minimum limit at for full speed mode</td>
</tr>
<tr>
<td>Upper hysteresis Full Speed input duty cycle (%)</td>
<td>99.00%</td>
<td>Upper hysteresis minimum limit at for full speed mode</td>
</tr>
<tr>
<td>Lower hysteresis maximum input duty cycle (%)</td>
<td>93.00%</td>
<td>Lower hysteresis maximum limit at which motor will stop running</td>
</tr>
<tr>
<td>Upper hysteresis maximum input duty cycle (%)</td>
<td>96.00%</td>
<td>Upper hysteresis maximum limit at which motor will stop running</td>
</tr>
<tr>
<td>Locked motor restart time (seconds)</td>
<td>13</td>
<td>Delay in restarting motor after motor locked condition is detected</td>
</tr>
<tr>
<td>Maximum Full Speed limit (RPM)</td>
<td>6500</td>
<td>Maximum speed limit at full speed mode</td>
</tr>
</tbody>
</table>
Tuning Motor Speed Curve

Excel Table

<table>
<thead>
<tr>
<th>Duty cycle (%)</th>
<th>Increasing duty cycle</th>
<th>Decreasing duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>21</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>23</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

Graph

- **Speed vs. Duty cycle**
- **Increasing cycle**
- **Decreasing cycle**