Top
首页 > 智慧城市 > 新闻 > 正文

赋能安防,NVIDIA 如何利用 AI 让城市更智慧

AI City中要解决的一个是人的问题,另一个是车的问题。围绕视频整合一起就是解决城市安防安全问题;从政府治理角度来讲,他们有两个目的,一个是管理,另外一个是通过管理来服务。
发布时间:2017-11-01 09:54        来源:雷锋网        作者:

安全是城市的基础,没有安全、和谐的环境,城市化进展毫无意义。

对于城市安防来说,要解决的大部分问题都可归结为视频中的“找车”“找人”。据数据统计,截至2020年,全球摄像机的数量预计将增至10亿台,海量数据对存储、宽带、处理、计算都带来巨大压力。过去的老方法是靠专家模型来做,其实就是手写程序,正确率最多能做到70%多。如果要寻找一个人,这70%几的正确率相当于没有应用于实际场景中。

幸运的是,大概在2012年底深度学习诞生了。即此,人们有了深度学习、非结构大数据、计算量三个要素。如果靠传统CPU计算的话,能源消耗、成本各方面都会吃不消。GPU计算是一个革命性的并行计算模式,很好的推进了深度学习和大数据。这三件事结合在一起使得人们能够在AI City上做一些事情。

那么到底何为AI City?它解决了什么现实问题?由此,在2017安博会期间,NVIDIA亚太区战略运营与合作伙伴副总裁潘迪详细解释了AI City并展示了NVIDIA Metropolis全新端到云的智慧城市解决方案。

潘迪说,AI City中要解决的一个是人的问题,另一个是车的问题。围绕视频整合一起就是解决城市安防安全问题;从政府治理角度来讲,他们有两个目的,一个是管理,另外一个是通过管理来服务。

他认为,对于AI City而言,有两个方面非常重要:

一、高效。城市资源有限,如何在有限的资源里让城市发挥更多作用;

二、安防监控。过去谈数字城市,后来有了Wifi和3G之后又谈网络城市,再后来一直谈智慧城市,现在人们谈AI City,如何用AI技术让城市更智能,这是循序渐进的过程。

在潘迪看来,在处理城市建设中的海量数据方面,AI比人力更擅长。由深度学习驱动的AI计算机能够颠覆传统数据处理、分析的方式,高效整合海量图像信息并将其转化为深层次的理解。从数据采集,存储,处理到推理运用,城市视频监控分析人员每日面临复杂挑战。以往单纯依靠人员监控的方式仅能覆盖视频监控数据的凤毛麟角,而早期视频分析系统的处理能力正确度远远低于人类。

过去都是靠摩尔定律这样一种方式实现每一年半翻一番的。今天摩尔定律不存在了,因为GPU计算比摩尔定律还要加速。对整个节能和成本控制来讲,不是20%、30%的提高,而是几十倍的提升。从人脸识别、物理物体识别等方面来讲,机器已经成为“超人”,达到90%多的正确率。在安防领域也有很多试点和应用。

专题访谈

合作站点
stat